Drag reduction on a patterned superhydrophobic surface.

نویسندگان

  • Richard Truesdell
  • Andrea Mammoli
  • Peter Vorobieff
  • Frank van Swol
  • C Jeffrey Brinker
چکیده

We present an experimental study of a low-Reynolds number shear flow between two surfaces, one of which has a regular grooved texture augmented with a superhydrophobic coating. The combination reduces the effective fluid-surface contact area, thereby appreciably decreasing the drag on the surface and effectively changing the macroscopic boundary condition on the surface from no slip to limited slip. We measure the force on the surface and the velocity field in the immediate vicinity on the surface (and thus the wall shear) simultaneously. The latter facilitates a direct assessment of the effective slip length associated with the drag reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drag reduction on laser-patterned hierarchical superhydrophobic surfaces.

Hierarchical laser-patterned surfaces were tested for their drag reduction abilities. A tertiary level of surface roughness which supports stable Cassie wetting was achieved on the patterned copper samples by laser-scanning multiple times. The laser-fabricated micro/nano structures sustained the shear stress in liquid flow. A rheometer setup was used to measure the drag reduction abilities in t...

متن کامل

Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface

Skin friction drag contributes a major portion of the total drag for small and large water vehicles at high Reynolds number (Re). One emerging approach to reducing drag is to use superhydrophobic surfaces to promote slip boundary conditions. However, the air layer or "plastron" trapped on submerged superhydrophobic surfaces often diminishes quickly under hydrostatic pressure and/or turbulent pr...

متن کامل

Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.

Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewett...

متن کامل

Effective hydrodynamic boundary conditions for microtextured surfaces.

Understanding the influence of topographic heterogeneities on liquid flows has become an important issue with the development of microfluidic systems, and more generally for the manipulation of liquids at the small scale. Most studies of the boundary flow past such surfaces have concerned poorly wetting liquids for which the topography acts to generate superhydrophobic slip. Here we focus on to...

متن کامل

Flexible conformable hydrophobized surfaces for turbulent flow drag reduction

In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 97 4  شماره 

صفحات  -

تاریخ انتشار 2006